超高清显示对有机发光二极管(OLED)的性能提出了越来越高的要求,即高效率、长寿命和高色纯度。近年来,多重共振型热活化延迟荧光(MR-TADF)材料由于其高效的窄带发射特性而得到迅速发展,在实现高效率高色纯度OLED方面极具潜力。不过,MR-TADF分子通常表现出较长的激子寿命(通常为几十甚至上百微秒),这使得其器件(特别是蓝光OLED)的稳定性面临极大挑战(蓝光发光层中激子累积碰撞生成的高能激子会导致化学键解离)。快速高效的激子利用是实现稳定高效蓝光器件的关键解决方案。为此,研究者们使用较短激子寿命的磷光材料和TADF材料作为MR-TADF材料的敏化剂,即采用磷光敏化荧光(PSF)和TADF敏化荧光(TSF)策略,很大程度地提升了MR- TADF器件的性能。然而在PSF和TSF机制中,激子利用的效率和速率仍不可避免地受到自旋统计和跃迁禁阻的限制(如图1a-b)。
图1. 不同敏化机制下激子动力学示意图
近日,中国科学院福建物质结构研究所卢灿忠团队以d-f跃迁的双线态发光稀土配合物作为敏化剂,提出并实施了蓝光OLED敏化新策略——双线态敏化荧光(DSF)。由于双线态激子生成不受限于自旋统计(电激发下,传统闭壳层材料上三线态激子:单线态激子生成比例为3:1),且双线态辐射跃迁和能量转移没有自旋跃迁禁阻的限制,该策略完美地实现了激子的高效且快速利用,从而获得高性能深蓝光OLED。
图2. 电致发光性能对比
研究团队采用双线态发射的稀土配合物Ce-2作敏化剂,MR-TADF材料ν-DABNA作为终端发射材料,制备了DSF-OLED(图2a)。实验证明,DSF-OLED发光层中Ce(III)先捕获空穴氧化为Ce(IV),接着与注入的电子结合形成双线态的Ce(III)*。Ce(III)配合物独特的空穴捕获和电子传输能力(图3a-c),保证发光层中主要形成双线态激子,再通过Förster能量传递(FRET)将能量转移至客体分子(图3d。这与光激发下的机制略有不同,如图1c,光激发下有部分激子在主体材料上形成)。由于规避了涉及三线态的慢激子动力学过程,DSF系统实现了极快的FRET(kFRET = 4.15 × 108 s−1),且FRET效率高达93.5%。由于具有很高的激子利用率和极短的激子停留时间(1.36 μs,图2f),DSF-OLED实现了高效的深蓝光发射,最大外量子效率为30.0%,相比于敏化前的器件效率(9.5%)提升了两倍多,最大亮度也从3742 cd m−2增加到23860 cd m−2,1000 cd m−2的亮度下CIE色坐标为(0.13,0.14),效率滚降仅为14.7%(图2b-d)。与传统的相关PSF-OLED和TSF-OLED相比,该DSF-OLED的综合性能指标(效率、色纯度、效率滚降)具有优势(图2e)。值得一提的是,相较于同等条件下制备和表征的非敏化器件,DSF-OLED运行寿命有非常显著的提升(9.1 h versus 7 min)。该研究表明,DSF策略在实现高效、稳定、高色纯度的蓝光OLED方面具有很大潜力,有希望在实现超高清OLED显示中发挥重要作用。
图3. DSF-OLED电致发光机制
(转自:你好北方稀土)
海量资讯、精准解读,尽在新浪财经APP
发表评论